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1 Introduction

Missingness is a ubiquitous attribute of most datasets arising in public health, policy, and more
broadly, in the social and natural sciences [LR19; Rub76]. For example, in a data set about test
performance in a school district, data for some students may not be available due to some students
being sick that day. Or, in the case of a clinical trial, data for some patients’ follow-up lab results
may not be available because they may not have the resources to get to a hospital each week. Yet
another source of missingness could be, in the case of the school district, if students who feel that
they may perform poorly choose to stay home that day.

All three of these basic examples of missingness correspond to three different types, which
Rubin [LR19] formulates as missing completely at random (MCAR), missing at random (MAR)
and not missing at random (NMAR). Following Rubin’s notational setup, let Y = (Yobs, Ymiss) be
a vector of individuals in a sample, which contains the values that an analyst observes and the
values that the analyst does not observe. Let R = (r1, . . . , rn) be a corresponding vector for those
individuals, where ri = 1 if the individual has a missing value and ri = 0. Let θ be the parameters
associated with Y and φ be the (distinct) parameters associated with R.

Definition 1.1 (Missing completely at random).

f(R | Y, θ,φ) = f(R | φ) (1)

In data that are MCAR, the missingness pattern is not explained by any of the actual values
or the parameters of their distribution.

Definition 1.2 (Missing at random).

f(R | Y, θ,φ) = f(R | Yobs,φ) (2)

In data that are MAR, the missingness pattern is fully explained by the observed values and
other variables.

Definition 1.3 (Not missing at random).

f(R | Y, θ,φ) = f(R | Yobs, Ymiss,φ) (3)
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In data that are NMAR, the missingness pattern is a function of both observed and unobserved
data. In general, it is extremely difficult to tell whether the type of missingness of data. MCAR
is the rarest type of missingness, and it is certainly possible that data in many common settings
are NMAR. A common approach is to treat the data as MAR if there is enough available, and
draw inferences from multiply imputed data sets according to some form of Rubin’s rules [RR07].
However, in recent years, there has been a renewed focus in evaluating whether this assumption is
one that leads to valid conclusions. In particular, in the case of MAR vs. MNAR, using multiple
imputation, a model-based imputation approach that relies only on observed data can lead to
biased conclusions when data are MAR and in fact are MAR. [HZ12] consider a related problem,
where they use posterior predictive checks to to quantify how inadequate an imputation model may
be. When an imputation model produces inadequate results, there could be two sources for the
inadequacy: (1) the model itself is inadequate or (2) the data are not missing at random.

[Dua+24] develop one of the first testing approaches for determining whether data are MAR or
NMAR, but in some sense, determining with high probability whether the missingness pattern is due
to a MAR or MNAR mechanism doesn’t essentially change the analyst’s approach to imputation
and subsequent inference, and the missingness itself may not fit into just one category. Moreover,
regardless of the imputation strategy used, the results will be biased for any one data set, even
though in a perfect world, an imputation strategy may yield an asymptotically unbiased result.
Therefore, the goal of this thesis is to study how decision analyses [Ber13] can be affected by
missingness type and imputation strategy.

In other words, for a given outcome with missingness, how much does the missingness pattern
need to be dependent on the outcome itself for the utility for a particular decision to change? This is
similar in spirit to tipping point analysis [LR14] and to e-value analysis [VD17; VDM19], where the
latter quntifies how much effect an unmeasured confounder must have to explain away the effect
of another variable associated with the outcome. We seek to measure how much “missingness”
must be correlated with the outcome of interest in order for the imputation method to change the
outcome.

2 Outline of approach

We begin by conducting initial simulations with a simple example of a political poll. In this
simulation, the outcome Y = (Yobs, Ymiss) consists of data on individuals voting, where the voter
status of any observed individual has some fixed effect and for missing individual, there is another
additive fixed effect. We will perform multiple imputation testing a grid of additive effects, using
Rubin’s rules to infer the percentage voting for a given candidate, ultimately comparing this to
standard multiple imputation which assumes no extra effect on the outcome for missing values.

Our ultimate goal is to repeat this sort of analysis for a variety of utility functions and scenarios:
examples include political polling, medical decision analyses and government policies regarding the
spread of infectious diseases. The initial direction proposed is necessarily simplistic in that it there
is only one outcome and no covariates; as the project proceeds, our goal is to develop a tool to do
this sort of analysis in real scenarios. To test our approaches, we will use public use data which
contain missingness (of which there are plenty of sources available). As we are not using human
subjects, we consider our ethical implications to be minimal.
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