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Abstract. This is an expository article on what I studied in a reading/research indepen-
dent study under the direction of Prof. Ezra Miller towards graduation with distinction in
mathematics. We describe the statistical intuition behind concepts arising in an algebraic
statistics paper on discrete log-linear models. We show that in essence, a log-linear model re-
lates to a multinomial distribution over colors, which induces a distribution on experimental
outcomes. As such, given the existence of a conjugate prior for the multinomial distribution,
we show that the algebraic and geometric findings in the log-linear model setup are ripe for
consideration from a Bayesian viewpoint, particularly from the perspective of inducing a
probability measure over a group orbit.

1. Introduction

Algebraic statistics is a nascent field that lies at the intersection of algebraic geometry
and statistics. The fundamental premise that spurred its creation is that many statistical
problems can be formulated as algebraic ones. In recent years, algebraic statistics has grown
tremendously, with a full Graduate Studies in Mathematics textbook having being published
in 2018 [Sul23]. In addition, there have been connections made between statistics, algebra
and evolutionary biology, which are most unexpected [PS05]. While the field of algebraic
statistics is new, connections with algebra from the world of (discrete) statistics have been
made since the mid-1970s.

For one, there are connections between the design of experiments and algebra. More
recently, however, several objects in algebraic geometry have been found to have connections
with objects in statistics. These connections range from direct correspondence to a rough
correspondence. The goal of this paper is to elucidate some of the connections between
torus actions and maximum likelihood estimation in log-linear models presented in a recent
article. I learned the latter two terms in introductory statistics classes, and before this
semester, I was unfamiliar with the former. The published paper emphasizes the geometry
and the algebra, and as I was reading it, I felt I could do with some statistical intuition.
Here, I provide the intuition I would have liked to have when reading this paper. I conclude
my discussion with opportunities for future directions to explore the connections between
Bayesian formulations of log-linear models and geometry.

2. Preliminaries

2.1. Statistical Preliminaries. Statistics is concerned with gleaning insight about param-
eters of a generating process from data. At a basic level, this means that given a set of data
and a parametrizable generating process (model), the goal is to estimate the parameters,
with high confidence, that are likely to have generated the data. A map from the data to
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the parameter space is called an estimator. Statistics, in a sense, is probability flipped on its
head. Whereas in probability, the goal is to estimate the odds of seeing a particular data set
given known parameters, in statistics, the data are known and the parameters are unknown.
This is perhaps best illustrated through the trial and error experiment process, where the
outcomes of several experiments are recorded.

Example 2.1 (Binomial distribution). Consider an experiment in which someone flips a pos-
sibly weighted coin n times and sees k heads. The coin in question has a certain probability
θ of landing on heads. We seek to estimate θ from the data. Recall that the distribution
function for k success in n independent trials under θ, the probability of a head, is

p(k; θ) =


n

k


θk(1− θ)n−k.

Some estimators are more useful than others. For example, mapping the data to a con-
stant is a valid estimator but provides no real information about the parameter. Maximum
likelihood estimation is one method for estimating the parameter θ from the observed data
and has several nice asymptotic properties (i.e. consistency and asymptotic normality). In
maximum likelihood estimation, we view the distribution function with the data as constants
and the parameters as variables. Taking the MLE is to find the parameters that maximize
the value of the density or mass function as follows, we have

log p(k; θ) = log


n

k


+ k log θ + (n− k) log(1− θ)

∂ log p(k; θ)

∂θ
=

k

θ
− n− k

1− θ
= 0

k(1− θ) = (n− k)θ

k − kθ = nθ − kθ

k = nθ

which implies that

θ̂ =
k

n
.

The maximum likelihood estimate θ̂ is the estimator for the parameter θ.

2.2. Algebraic Preliminaries. In this section, we will discuss the algebraic and geometric
structures and setup to which connections to toric actions and varieties are made in discrete
statistics. For a discussion about continuous models, see the material in [AKRS21a], which
discusses. We will soon provide an algebraic definition for the main object of study in the
paper on toric varieties for log-linear models: the log-linear model itself. However, first, we
must provide an algebraic and geometric definition of what is considered to be a (discrete)
statistical model, that we will work with from the algebraic statistics perspective.

Consider the (m−1)-dimensional probability simplex (denoted as having m−1 dimensions
because there are are m− 1 free parameters):

∆m−1 =


p ∈ Rm | pj ≥ 0 for all j and

m

j=1

= 1


.
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Each point in this simplex corresponds to a probability mass function (i.e. a discrete dis-
tribution) as each of m possible states is assigned a non-negative theoretical probability. A
statistical model M is a collection of distributions, and therefore a subset of the m − 1-
dimensional simplex. The MLE procedure described in Section 2.1 is to observe counts of
these m states and then find the point p ∈ M ⊆ ∆m−1 that maximizes the likelihood (or
probability) of observing those counts, up to swapping of the order in which the states occur.
As such, the likelihood, defined in Section 2.1 is given by

f(u; p) = pu1
1 . . . pum

m ,

where u is a vector of observed counts of the states and p is the vector of the theoretical
probabilities of the states.

The idea of characterizing a statistical model as a collection of points in a simplex is a
very geometric one, and in reality, a statistician would conceive of a (discrete) model to
have much more structure than merely a collection of possible points where the individual
entries lie in the positive orthant and sum to 1. In the discrete world, statisticians often deal
with counts of data, and there are many common models for such data: binomial, Poisson,
multinomial, negative binomial, etc. Indeed, the paper [AKRS21b] puts a form of algebraic
structure on the model that is considered. This structure agrees with what is essentially the
multinomial distribution for count data, as I will describe in Section 3. But for now, I will
continue to focus on the algebraic characterizations of the statistical model presented and
its properties which connect it to the algebraic torus. In their paper, [AKRS21b] describe
what they call a “log-linear model.” We first provide a slightly more general definition of
this model after [Sul23], and then examine its connection to algebraic structure.

Definition 2.2 (Log-affine model). Fix A ∈ Zd×m as a matrix of integers, and let h ∈ Rm
>0.

The log-affine model formed from this matrix is the set of probability distributions (or mass
functions) that satisfy

MA,h := {p ∈ ∆m−1 : log p ∈ log h+ rowspan(A)} .
When h = 1, the all 1’s vector, then we denote MA,h := MA and call the model log-linear,
which is the specific model used in [AKRS21b]. From now on, we will take h = 1.

The first immediate property that can be seen is that when 1 ∈ rowspan(A) and h =
1, the uniform distribution is contained within the model MA. This is because one can
normalize, dividing p entry-wise by m to get a point with all states having equal probability
in the simplex. Discrete log-linear models are known commonly as toric models to algebraic
statisticians. To show connections to toric varieties, we first provide another definition of a
monomial map associated to a log-linear model.

Definition 2.3 (Monomial map associated to log-linear model). From the previous definition
take A ∈ Zd×m with entries denoted aij, set h = 1, and consider MA. Also assume that
the uniform distribution is contained within MA. We have a monomial map of the following
form associated with the model MA:

φA : Rd → Rm

where

θ →


d

i=1

θ
aij
i



1≤j≤m

.
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Some authors choose to write a normalization constant of Z(θ) in the front of this monomial
map, which ensures that the map sends θ into the simplex ∆m−1.

We note that this parametrization of a log-linear model can be contextualized in terms
of real-world applications, which we will do in the next section, but for the sake of self-
containment, we will move on now to a proposition that describes the toric ideal that is
connected to this model.

Definition 2.4 (Toric ideal). Let A ∈ Zd×m as before and put p ∈ Rm. The toric ideal

IA := I(φA(Rd)) ⊆ R[p1, . . . pm]
is the vanishing ideal generated by the set of possible distributions on the states of the model
MA.

For the reader unfamiliar with the notation I(·), for W ⊆ Kr for a field K,

I(·) := {f ∈ K[p] : f(a) = 0 for all a ∈ W}.
Therefore, IA is the set of all polynomials f ∈ R[p] such that f(x) = 0 for x ∈ imφ. We
now present the proof of a statement that appears in [AKRS21b] and is taken for granted.
It is a standard result in [Sul23], but one that is not directly intuitive (at least to me) so I
provide its proof, spelling out all of the details.

Proposition 2.5. The toric ideal for a log-linear model associated with A ∈ Zd×m is a
binomial ideal and

IA = 〈pu − pv : u, v ∈ Nm and Au = Av〉.
Proof. First, consider a binomial pu − pv such that Au = Av. Then, we have that this
polynomial is in IA. To show this, pick x ∈ imφ. Recall that pj =

d
i=1 θ

aij
i . Therefore,

p
uj

j = (θ
a1j
1 · · · θadjd )uj = θ

a1juj

1 · · · θadjuj

d .

This means that

pu =
m

j=1

θ
a1juj

1 · · · θadjuj

d = θ
m

j=1 a1juj

1 · · · θ
m

j=1 adjuj

d .

Notice that pv takes the same form with the uj’s replaced with vj’s. But in the exponents,
the sums are simply the products of the rows of A with u and v respectively, which are
known to be equal. Factorizing therefore yields the claim that pu − pv is in the ideal. This
statement has an intuitive statistical rationale that will be explained in the next section.

To complete the proof, we must show that all such polynomials that vanish when evaluated
at a point p ∈ imφ are generated by the set of these binomials. Pick such a polynomial
f ∈ IA and take cup

u to be a monomial in this polynomial that has nonzero coefficient. As the
polynomial must vanish for any point p, for any θ in the source of φ (i.e. Rd), the polynomial
must vanish as a function of θ in the form f(φ(θ)). This means that cup

u must have a paired

term that allows it to cancel. From above, note that pu = θ
m

j=1 a1juj

1 · · · θ
m

j=1 adjuj

d , so in order
to cancel for any choice of θ, there must be a term cvp

v that allows for this cancellation. This
means that the dot products must align, implying that the restriction on u and v is that
Au = Av. Note that we must have this “corresponding negative term” for any such cup

u in
the polynomial f , which means that f can and must be represented as a sum of binomials
of the form cu,v(p

u− pv) where Au = Av. We have shown that a generating set for this ideal
is those very binomials. □
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3. A Statistical Interpretation of Toric Models

This discussion first rephrases terms related to the algebraic characterizations of log-
linear models presented in [AKRS21b] and in the previous section in ways that I feel are
more natural to a frequentist statistician who thinks in terms of a repeated experiments
framework. In particular, we can map each of the ideas presented in Section 2.2 to a setting
where experiments are performed by repeatedly drawing balls of different colors from a bag.
Moreover, the paper starts with a discussion of the algebra and the geometry that is used,
and then moves into the statistics. I will do the opposite: first, I will describe the statistical
framework and experimental design, and then, I will show how this connects to algebraic
structures.

Example 3.1. Consider an experiment in which there are balls of d different colors, each
with a certain probability θi of being chosen from the bag, such that

d
i=1 = 1. Suppose

the person conducting the experiment draws with replacement from the bag n times. Put
the number of times that a ball of color i ∈ [d] is drawn as ni, with

d
i=1 ni = n. Now, the

probability mass function of drawing the (ni)
d
i=1 balls is

p(n1, . . . , nd) =
n!

n1! · · ·nd!
θn1
1 × · · ·× θnd

d

∝ θn1
1 × · · ·× θnd

d .

Already, one can see that this probability mass function, which is the probability mass
function for the multinomial distribution, is beginning to take the form of the monomial
map in Definition 2.3. Moreover, notice that here, θ lies in the ∆d−1 dimensional simplex, a
fact that we will come back to in Section 4.

To extend this example further so that it agrees with the log-linear model setup concerning
a matrix A and a probability simplex with m “states,” consider an extended version of the
experiment in Example 3.1. In particular, suppose that the person conducting the experiment
wishes to conduct the experiment multiple times. That is, they draw from the bag n times
and record the empirical distribution of the colors as just one experiment, and suppose they
conduct k experiments.

First, notice that the number of colors of balls in the bag and the number of times the
person conducting the experiment draws from the bag induces a probability distribution
on the possible outcome of any given experiment. Indeed, the probability of observing any
particular possible experiment is the probability of observing the colors that comprise that
possible experiment. Therefore, if there are m possible outcomes for an experiment, where
each of these outcomes representing a “binning” of colors, then we have a distribution over
m states (i.e. p ∈ ∆m−1), where each state is a possible experimental outcome.

Example 3.2. Consider an example where each experiment contains three draws with a bag
of two colors a and b. The possible outcomes for the number of color a and the number of
color b, or in other words, the possible outcomes for any given experiment, are (3, 0), (2, 1),
(1, 2) and (0, 3). Then, suppose the person conducting the experiment does so twice with
one outcome resulting in (3, 0) and another resulting in (1, 2). What is the probability of
this occurring? We have

p((3, 0) and (1, 2)) ∝

2

1


θ3aθ

0
bθ

1
aθ

2
b ∝ θ4aθ

2
b .
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Notice that this example directly aligns with the example of the twisted cubic in [Sul23,
Example 6.2.5]. More generally, the probability of observing a certain count of experimental
outcomes is simply the probability of observing the total number of colors summed over all
the observed experiments, up to permutation (i.e. disregarding the factorial terms in front,
which swap the order of the experiments and in the case of the singular experiment, swap
the order of the draws).

We now have the intuition to reconstruct the setup in [AKRS21b] from the viewpoint of a
distribution on the colors. Instead of constructing a distribution on the possible experimental
outcomes first and relating it retrospectively to the distribution on the colors via a monomial
map parametrization and a torus action, we will take the more intuitive approach, building
up from the distribution on the colors, showing how a torus action naturally relates the
distribution on the colors to the distribution on the experimental outcomes. Then, having
observed many experiments and knowing the binning of colors that make up each potential
experimental outcome, we will show that whether or not it is possible to find the maximum
likelihood estimate for the distribution of experimental outcomes is related to the properties
of the torus action that maps between the distribution on the colors to the distribution on
the experimental outcomes.

To do so, for a set ofm experimental outcomes determined by n draws per experiment with
d colors, we would like to construct a map ψ : ∆d−1 → ∆m−1 (up to normalizing constants),
which takes a distribution θ ∈ ∆d−1 on the colors and takes it to a distribution p on the
possible experimental outcomes. For a given experiment j ∈ [m], let us observe n1j, . . . , ndj

colors, where
d

i=1 nim = n. We have

ψ :∆d−1 → ∆m−1

with

θ →

θ
n1j

1 × · · ·× θ
ndj

d


1≤j≤m

.

Notice that we have arrived back at the very monomial map associated to the log-linear model
for the potential experiments that we stated in Definition 2.3, where each component of p is
a mass from the multinomial distribution, up to ordering of the draws for each experiment.
We can now identify (nij)1≤i,≤d,1≤j≤m with the matrix A ∈ Zd×m. That is, the columns of
A are identified with the various counts of the d colors in the bag for each experimental
outcome. We can take this further to show that this map is the action of θ as an element of
the d-dimensional algebaric torus.

Definition 3.3 (Torus action). Consider the d dimensional complex torus GTd. The action
of GTd on Pm−1

C under the matrix A ∈ Zd×m is given by the map that first sends a torus
element λ = (λ1, . . . ,λd) to the matrix





λa11
1 · · ·λad1

d

λa12
1 · · ·λad2

d

λa13
1 · · ·λad3

d
. . .

λa1m
1 · · ·λadm

d




.

The torus element then acts on a vector v ∈ Pm
C through right multiplication by the above

matrix.
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To show how p ∈ ∆m−1 arises from a torus action, we make the (trivial) statement that the
probability of observing an experimental outcome is the probability of observing one time
in a repeated experiments framework. This statement allows us to encode the distribution p
as an action of the torus element θ on 1, the all 1’s vector. Indeed, let λ = θ as an element
in the d-dimensional algebraic torus, and identify (nij)1≤i,≤d,1≤j≤m with A as before, and let
θ act on 1.

Revisiting the first statement of Proposition 2.5, that binomials of the form pu − pv are in
the toric ideal when Au = Av, also now has a very intuitive rationale. Recall that the columns
of A are identified with the counts of the d different colors, which means the row vectors
identify the numbers of color i ∈ [d] observed across the possible experimental outcomes.
Therefore if Au = Av, that means that u and v are two count vectors for experimental
outcomes that yield the same count of each of the d colors. As the vector p is simply a
function of the probability of the colors for fixed theoretical experimental outcomes, the
binomial must evaluate to zero because the counts of the colors is the same.

3.1. Maximum Likelihood Estimation. Ultimately, the goal of [AKRS21b] is to use
the general toric geometry of GTd to find the maximum likelihood estimate for the true
distribution p ∈ ∆m−1 over the experimental outcomes from a vector of counts of these
outcomes taken over n experiments. There are certain conditions that must be met by the
torus action of GTd under a certain linearization for the MLE to even exist, relating to its
stability of the 1 vector under the action of elements in the torus (i.e. possible distributions
of colors).

3.1.1. Geometric Background Related to Torus Actions. A linearization of the action of GTd

is a corresponding action that takes the matrix A and subtracts a vector b ∈ Zd from each
column of A. We will now describe certain notions related to the stability of a group action,
and then a torus action. For a vector v define its capacity cap(v) := infg∈G g · v where g
an element in a group G. We have the following definition for different forms of stability
under the group action, that will be related to geometry for a torus action, noting that the
algebraic torus is a group.

Definition 3.4 (Notions for stability). Let v ∈ Cm. Denote the orbit of v by G · v, and the
orbit closure in the Euclidean sense by G · v. Let the stabilizer be Gv = {g ∈ G : g · v = g}.
For those unfamiliar with group theory, the “orbit” of a vector is the possible locations the
vector can be sent by the group action. The stabilizer of a vector are the members of the
group that map the vector to itself. We call v

(a) unstable if 0 ∈ G · v. If 0 is in the orbit closure, then the capacity of v is 0.
(b) semistable if 0 /∈ G · v. If 0 is not in the orbit closure, then the capacity of v is greater

than 0 as the closure of the orbit includes the infimum over all possible destination
points.

(c) polystable if v ∕= 0 and the orbit is closed.
(d) stable if v is polystable and the stabilizer is finite.

Unstable points form the null cone of the action.

Denote the convex hull of the columns of A as a polytope

P (A) := conv{a1, . . . aj}.
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Points in P (A) are equivalently represented by Au, where u ∈ ∆m−1 by the definition of a
convex hull. A subpolytope in this convex hull for an index set J ⊆ [m] is denoted by

PJ(A) := conv{aj|j ∈ J}.
Finally, for a vector v, denote its support supp(v) := {j | vj ∕= 0}. In other words, supp(v)
forms an index set J ∈ [m] that we can use to make subpolytopes. Denote

Pv(A) := conv{aj | j ∈ supp(v)}.

For a given polytope P ⊆ Rd, we will denote the interior by int(P ) and its relative interior
by relint(P ). The following theorem relates Definition 3.4, the various notions of stability,
to the geometry of polytopes constructed from the columns of A, when the group action is
given by a torus.

Theorem 3.5 (Hilbert-Mumford criterion for a torus). Let v ∈ Cm and take the action of
GTd given by a matrix A ∈ Zd×m with a linearization b ∈ Zd. We have,

(a) v is unstable if and only if b /∈ Pv(A)
(b) v is semistable if and only if b ∈ Pv(A).
(c) v is polystable if and only if b ∈ relint(Pv(A))
(d) v is stable if and only if b ∈ int(Pv(A)).

The proof of this theorem is provided elsewhere [AKRS21b, Appendix A]. We now have
enough to describe how the existence of the MLE for the distribution of experimental out-
comes given an observed count of each of these experimental outcomes, stored in a vector
u. We first remark that this vector u must have its components sum to the total number
of experiments undertaken (i.e.

m
i=1 ui = n). If we divide u by n elementwise, we have

an empirical, or observed distribution over the possible experiments. Denote this empirical
distribution as ū.

An immediate possible conclusion is that ū is the MLE for p, and indeed this may be
a possible MLE. But are there other possible MLE’s? The answer is a possible “yes,” as
similar to the first statement in Proposition 2.5, different observed counts of experiments
could lead to the same number of observed colors, and so even though we observed one
particular experimental distribution of experiments, we could just as easily have observed a
different distribution of experiments. This idea is what encapsulates the notion of a sufficient
statistic – that the statistic contains all there is to know about the model parameters. In
other words, knowing a count of observed experiments does not tell you everything about
the true probabilities of observing a particular experiment, but knowing the counts of the
colors does. This intuition is encapsulated in the idea that the MLE for p is a vector q that
satisfies

Aq = Aū,

which is a fact that is shown in [Sul23, Corollary, 7.3.9]. There is an issue, however, with
this approach, and that is what happens if we observe a count of zero for one experimental
outcome? It is certainly possible that this could be the case experimentally, but any p
containing zero lies on the boundary of MA. This is due to the logarithmic condition that
defines MA: we cannot include outcome probabilities of zero in the model as the logarithm
is not defined; however, we can get arbitrarily close to zero.

So, in order to find an MLE, there must be some other count vector that yields the same
number of colors as that of u, which defines the empirical distribution u

n
= ū with one of the
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coordinates zero. In essence, if we cannot do this, the MLE does not exist. However, in this
case, if we extend MA to its closure in the Euclidean topology (i.e., to include distributions
where one or more of the experimental outcomes has probability zero), we can always find
an MLE, as the likelihood is continuous and MA is a compact set. We will call the MLE
on this set the extended MLE. The next theorem will provide geometric conditions related
to the stability of the torus action, which shows when we can find a true MLE and when we
must default to the extended MLE.

Theorem 3.6 (MLE existence). Let u ∈ Zm
≥0 be a vector of counts of the observed experi-

mental outcomes that sum to n. Let A ∈ Zd×m encode these experimental outcomes, and let
MA be the associated log-linear model such that the uniform distribution exists in the model.
Then, the stability under the torus GTd with matrix nA and linearization b = Au is related
to the following:

(a) 1 unstable, which does not happen
(b) 1 semistable if and only if the extended MLE exists
(c) 1 polystable if and only if the MLE exists
(d) 1 stable, which does not happen

Proof. First, observe that 1 unstable does not happen. 1 would be unstable if and only if
b /∈ P1(nA) = P (nA). But notice that Au = b, so we divide u/n = ū, and multiply A by n,
we get a vector such that the entires sum to 1, we get nAū = b, so b ∈ P (nA). Now, we will
show that 1 is never stable under the action. To do so, we will show that the interior of this
polytope is empty. By assumption 1 is in the rowspace of A (so it is in the rowspace of nA).
Therefore, all columns of A lie on the same hyperplane defined by r1x1 + · · ·+ rdxd = 1. As
such, any affine combination of the vectors that lie in this hyperplane will also like in the
hyperplane, since we’re taking a weighted sum of the constant that defines the hyperplane.

Note that 1 is now either going to be semistable or polystable. If we show that the
MLE exists if and only if 1 is polystable, then we will have shown also shown (b), as the
extended MLE always exists. Suppose 1 is polystable. This is identified with b = Au ∈
relint(P1(nA)) = relint(P (nA)). We will show that this implies MLE existence. Polystable
means that there is some convex combination of the columns of nA such that Au = nAv
with the entries of v strictly positive that sum to 1 [Bro12, Chapter 3]. Recall that an MLE
is a solution to the equation Aq = Aū, where q lies in MA (i.e. requires all positive entries).
Dividing through, we have that Au

n
= Av, and so the v that ensures that Au is in the relative

interior of P (nA) is the q that satisfies the MLE equation.
Finally, suppose the MLE does exist. In this case, we have a strictly positive solution to

the equation Aq = Aū. Then, clearly, nAq = Au, which means that Au ∈ relintP (nA) and
the action on 1 is polystable. □

Note that in the case when u contains zeros, but the action is still polystable with respect
to the linearization Au, it is possible to find another observed experiment count that results
in the same counts of colors as that experiment count with zeros for some of the potential
experiment. And, by the convexity of the likelihood function, this MLE will be unique.

It is possible to give another geometric condition for MLE existence, this time in terms of
the semistability of the vector of counts, which is more intuitive than using a vector of all
1’s.

Theorem 3.7. Let u ∈ Zm
≥0 be a vector of counts of the observed experimental outcomes that

sum to n. Let A ∈ Zd×m encode these experimental outcomes. Then, the MLE exists if and
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only if there is some b ∈ Zd where b = Av for some v ∈ Rm
>0, such that u is semistable for

the torus action given by nA with linearization b.

Proof. Assume the MLE exists. First of all, we know that Au = b lies in the polytope
Pu(nA). This is because we are only considering columns that have a corresponding nonzero
entry in u itself. Au is obviously in the span of only those columns, and Pu(nA) is an
affine combination of those columns. Shifting the n to multiply the weights of the affine
combination matches up the two terms. Using criterion (b) in Theorem 3.5, u is semistable
with respect to the linearization Au, as Au ∈ Pu(nA). We must now show that u has all
positive real entries and meets the criteria for v. We may use the previous theorem, noting
that Au is in the relative interior of P (nA), so shifting the n to the affine weights yields the
claim. Therefore, if the MLE exists, u is semistable with respect to the torus action given
by nA with linearization b = Au.

Now, suppose that u is semistable for the torus action given by nA for some linearization
b = Av with v ∈ Rd

>0. That is, there is some Av ∈ Pu(nA), which in turn means that
there is some u∗ with support matching the indices where u is nonzero, and with the sum
of entries equalling 1, such that Av = nAu∗. We are free to set this u∗ = u

n
= ū as u

n
meets

both criteria for u∗. Doing so provides the solution to the MLE equation Aq = Aū, where
q = v

n
. □

This means that the MLE exists if and only if there exists some completely positive “count”
vector for experimental outcomes such that when you subtract the induced color counts from
the color counts of the original experimental outcomes, and take the “difference probability”
of the experimental outcomes as follows,





λa11−b1
1 · · ·λad1−bd

d

λa12−b1
1 · · ·λad2−bd

d

λa13−b1
1 · · ·λad3−bd

d
. . .

λa1m−b1
1 · · ·λadm−bd

d




,

the original observed experimental outcomes under these difference in color counts proba-
bilities, for any such color probabilities, have a nonzero maximum lower bound probability.
Though interesting, I am not sure (yet) if this provides me with any additional statistical
intuition.

4. Towards Bayesian Formulations

Throughout this paper, we have assumed that the value of p, and therefore the values
of θ that induce p via the monomial map are fixed, but unknown quantities. But what if
they were random variables themselves and followed some sort of distribution that we had
prior knowledge about? How would observing counts of experimental outcomes change our
intuition about our prior beliefs of the distribution of these experimental outcomes? This
is the central question of Bayesian statistics, where parameters of generating processes are
treated as variable in and of themselves. Bayesian formulations of log-linear models is what
I hope to study from an algebraic and geometric perspective in the following semester.

In this section, I give a brief introduction to Bayesian formulations in classical statistics
and present some possible directions for future work.
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4.1. Bayesian Statistics: A Primer. We will introduce Bayesian updating through the
example of a binomial distribution with parameter θ that is a random variable. Consider
the setup in Example 2.1, the binomial distribution with parameter θ. The likelihood of the
data, given the parameter θ is

p(k | θ) =

n

k


θk(1− θ)n−k.

Now, let’s assume that we have a prior belief about θ in that it follows some distribution p(θ).
Because θ is not fixed and follows a distribution, we do what’s called “turning the Bayesian
crank” to find a posterior distribution for the parameter. The posterior distribution is the
distribution of the parameter conditional on the observed data. By Bayes’ theorem, we have

p(θ | k) = p(k | θ)p(θ)
p(k)

.

Note that p(k) =

p(k | θ)p(θ)dθ, as this expression marginalizes out θ. Oftentimes, this

integral is a tedious and possibly intractable computational task, and indeed, there are many
statistical tools for doing so, as well as connections found to algebra and geometry [Lin11].
But often, there exist models that can represent prior beliefs in the data that result in the
posterior belonging to the same family of models. This motivates the notion of a conjugate
prior.

Definition 4.1 (Conjugate prior). If, given a likelihood p(x | θ), the posterior distribution
p(θ | x) is of the same family as the prior p(θ), the prior p(θ) is said to be conjugate with
the likelihood.

Importantly, as they are chosen for algebraic convenience, conjugate priors allow us to
disregard the integral in the denominator of Bayes theorem as a known constant because
we can read off the posterior based on the kernel of the likelihood and the kernel of the
conjugate prior. In the case of the previous example, the prior family that’s conjugate with
the binomial likelihood is the beta prior, resulting in the beta-binomial model. We show the
conjugate update for the beta-binomial model below.

Example 4.2 (Beta-binomial update). We have a prior on θ as

p(θ) = dbeta(α, β)

and the likelihood for the trials is

p(k | θ) = dbinom(θ).

We have that

p(θ | k) ∝ p(k | θ)p(θ)
∝ θk(1− θ)n−kθα−1(1− θ)β−1

∝ θk+α−1(1− θ)n−k+β−1

∝ dbeta(α + k, β + n− k).

This is the posterior distribution for θ given the prior, the sampling model and the observed
data.



12 ADWAY S. WADEKAR

In the Bayesian regime, the analogue to the MLE is the maximum a posteriori estimate
(MAP), which is the value of the parameter that maximizes the posterior density or proba-
bility of the parameter. This is the quantity we seek to study in an algebraic and geometric
setting. MAPs have previously been studied in [Sul23, Chapter 18], for the special case of a
hidden Markov model. The authors of [Sul23, PS05] have further connected MAP estimates
to tropical geometry.

4.2. Bayesian formulations in log-linear models. We seek to put a tractable, conjugate
prior over p ∈ MA, which is to say, we seek to put a prior distribution over the experimental
outcomes. While it certainly may be possible to do this (in fact, I suspect that one could
naturally use the Dirichlet prior as I’m about to describe below), in statistics, it is much
more natural to put a prior over the distribution of the colors.

Just as in the coin flipping case, where the beta family allows us to tractably represent
different beliefs in the values of θ and by extension 1− θ by choosing α and β, the Dirichlet
prior allows us to do the same for (θ1, . . . , θd) such that

d
i=1 θi = 1. In other words, the

Dirichlet distribution given parameters α1, . . . ,αd > 0 is a conjugate prior distribution over
the probability simplex

∆d−1 =


θ ∈ Rd | θi ≥ 0 for all j and

d

i=1

= 1



for the colors. Algebraically speaking, there is a map

ξ : ∆d−1 → R>0

where by the Dirichlet distribution,

θ → 1

B(α)

d

i=1

θαi−1
i .

Now observe that if the colors have a prior distribution (i.e. every point in the (d − 1)-
dimensional simplex is associated with some prior probability), given a matrix A ∈ Zd×m,
we can induce a prior probability on the experimental outcomes directly. Recall that the
probability of an experimental outcome j encoded by the column aj of A given a specific
distribution on the colors is

p(aj | θ) ∝ θ
a1j
1 . . . θ

adj
d .

In the above context, the induced (fixed) probability distribution of the experiments is given
by the action of the torus element θ under the matrix A ∈ Zd×m on 1, the all 1’s vector.

But now, it may be somewhat bold to claim this, but we have a probability distribution
over θ, which means we have a probability distribution over the torus element chosen. As the
probability distribution for the experimental outcomes is equivalent to the appropriate point
in the orbit of 1 for a given torus element acting, the prior distribution for the experimental
states may actually be a distribution over the (possibly restricted) orbit of 1. These are the
sorts of characterizations I hope to study next semester, along with discovering how to relate
such geometry to MAP estimates.
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