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Abstract. This is an expository thesis on algebraic aspects of log-linear models, conducted
over two independent studies under the guidance of Prof. Ezra Miller. We describe the
statistical intuition behind concepts arising in the algebraic statistics of discrete log-linear
models. We show that in essence, a log-linear model relates to a multinomial distribution
over colors, which induces a distribution on experimental outcomes. In the second half of
the thesis, we explore two extensions of the classical algebraic and geometric notions of log-
linear models. The first is the Bayesian setting, where prior belief/information and observed
data are combined to make inferences. The second relates to uncertainty quantification and
how algebra can be used to estimate the uncertainty of a point estimate for a parameter
without appealing to asymptotic arguments used in classical statistics.

Contents

1. Introduction 1
2. Preliminaries 2
2.1. Statistical Preliminaries 2
2.2. Algebraic Preliminaries 3
3. A Statistical Interpretation of Toric Models 5
3.1. Maximum Likelihood Estimation 8
4. Bayesian Formulations 11
4.1. Bayesian preliminaries 11
4.2. Conjugate setup in log-linear models 12
4.3. Bayesian algebraic statistics setup 14
5. Confidence Bounds: Sampling from conditional distributions 15
5.1. General discrete exponential families 15
5.2. Toric model interpretation 19
6. Updating to Zero 20
References 21

1. Introduction

In recent years, connections between classical algebraic geometry and log-linear models
have been described by a number of authors [YAK+21, Sul23, PS05]. Most often, when
using log-linear models, data analysts are concerned with the maximum likelihood estimate
(MLE), which is the maximizer of the likelihood function conditional on observed data. In
log-linear models, a vector p of probabilities, which encodes a distribution over a set of
experimental outcomes is given by a parametrization in terms of probabilities on states on
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components of each experiment. In algebraic terms, this is related to a monomial map and
an element in the d-dimensional algebraic torus’ action on the all-ones vector.

To a statistician, what is observed is data concerning these experimental outcomes: in
particular, a vector of counts of each experimental outcome. The goal is to estimate the
probabilties of each experimental outcome using the data that are those counts. In [YAK+21],
polyhedral conditions are given for the existence of the MLE in a log-linear model, which
are related to the stability of the action on the all-ones vector of the algebraic torus. These
polyhedral conditions align with the intuitive solution for the MLE when each experimental
outcome is observed at least once (i.e. when each entry in the vector of counts is nonzero).
The MLE, in this case, is simply the vector of counts divided by the number of experimental
trials.

The key difficulty, as we explain, is that sometimes the observed data have counts of
zero for certain experimental outcomes. This is particularly prevalent in so-called “small
data” settings, where it is prohibitive to run an experiment a large number of times. In
this setting, One cannot simply allow for the standard approach to constructing the MLE,
since only distributions over the experimental outcomes containing all positive probabilities
are allowed in the log-linear models. Therefore, there must be some alternative vector of
possible counts that maximizes the likelihood function. The first half of this thesis is spent
on providing the statistical intuition behind these polyhedral conditions.

In this thesis, we also explore two second-order extensions of MLE analysis in an alge-
braic context. The first is how the algebra and geometry of log-linear models relates to
the Bayesian framework. The Bayesian framework is useful for incorporating prior informa-
tion into statistical inferences. We show that for the classical Bayesian point estimate for a
parameter of interest, the Bayesian setup “factors through” and that the same polyhedral
formula for the existence of this point estimate holds. The second extension is about un-
certainty quantification. We explore a particular method of uncertainty quantification that
relies on sampling from the sample space conditioned on a given value of a sufficient statistic.
This method relies on finding the generating set of an ideal in a polynomial ring. Computing
ranges of parameters from this sort of sample is more appropriate for “small data” settings,
where asymptotic arguments do not hold.

2. Preliminaries

2.1. Statistical Preliminaries. Statistics is concerned with gleaning insight about param-
eters of a generating process from data. At a basic level, this means that given a set of data
and a parametrizable generating process (model), the goal is to estimate the parameters,
with high confidence, that are likely to have generated the data. A map from the data to
the parameter space is called an estimator. Statistics, in a sense, is probability flipped on its
head. Whereas in probability, the goal is to estimate the odds of seeing a particular data set
given known parameters, in statistics, the data are known and the parameters are unknown.
This is perhaps best illustrated through the trial and error experiment process, where the
outcomes of several experiments are recorded.

Example 2.1 (Binomial distribution). Consider an experiment in which someone flips a pos-
sibly weighted coin n times and sees k heads. The coin in question has a certain probability
θ of landing on heads. We seek to estimate θ from the data. Recall that the distribution
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function for k success in n independent trials under θ, the probability of a head, is

p(k; θ) =

󰀕
n

k

󰀖
θk(1− θ)n−k.

Some estimators are more useful than others. For example, mapping the data to a con-
stant is a valid estimator but provides no real information about the parameter. Maximum
likelihood estimation is one method for estimating the parameter θ from the observed data
and has several nice asymptotic properties (i.e. consistency and asymptotic normality). In
maximum likelihood estimation, we view the distribution function with the data as constants
and the parameters as variables. Taking the MLE is to find the parameters that maximize
the value of the density or mass function as follows, we have

log p(k; θ) = log

󰀕
n

k

󰀖
+ k log θ + (n− k) log(1− θ)

∂ log p(k; θ)

∂θ
=

k

θ
− n− k

1− θ
= 0

k(1− θ) = (n− k)θ

k − kθ = nθ − kθ

k = nθ

which implies that

θ̂ =
k

n
.

The maximum likelihood estimate θ̂ is the estimator for the parameter θ.

2.2. Algebraic Preliminaries. In this section, we will discuss the algebraic and geometric
structures and setup to which connections to toric actions and varieties are made in discrete
statistics. For a discussion about continuous models, see the material in [AKRS21], which
discusses. We will soon provide an algebraic definition for the main object of study in the
paper on toric varieties for log-linear models: the log-linear model itself. However, first, we
must provide an algebraic and geometric definition of what is considered to be a (discrete)
statistical model, that we will work with from the algebraic statistics perspective.

Consider the (m−1)-dimensional probability simplex (denoted as having m−1 dimensions
because there are are m− 1 free parameters):

∆m−1 =

󰀫
p ∈ Rm | pj ≥ 0 for all j and

m󰁛

j=1

= 1

󰀬
.

Each point in this simplex corresponds to a probability mass function (i.e. a discrete dis-
tribution) as each of m possible states is assigned a non-negative theoretical probability. A
statistical model M is a collection of distributions, and therefore a subset of the m − 1-
dimensional simplex. The MLE procedure described in Section 2.1 is to observe counts of
these m states and then find the point p ∈ M ⊆ ∆m−1 that maximizes the likelihood (or
probability) of observing those counts, up to swapping of the order in which the states occur.
As such, the likelihood, defined in Section 2.1 is given by

f(u; p) = pu1
1 . . . pum

m ,
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where u is a vector of observed counts of the states and p is the vector of the theoretical
probabilities of the states.

The idea of characterizing a statistical model as a collection of points in a simplex is a
very geometric one, and in reality, a statistician would conceive of a (discrete) model to
have much more structure than merely a collection of possible points where the individual
entries lie in the positive orthant and sum to 1. In the discrete world, statisticians often deal
with counts of data, and there are many common models for such data: binomial, Poisson,
multinomial, negative binomial, etc. Indeed, the paper [YAK+21] puts a form of algebraic
structure on the model that is considered. This structure agrees with what is essentially the
multinomial distribution for count data, as I will describe in Section 3. But for now, I will
continue to focus on the algebraic characterizations of the statistical model presented and
its properties which connect it to the algebraic torus. In their paper, [YAK+21] describe
what they call a “log-linear model.” We first provide a slightly more general definition of
this model after [Sul23], and then examine its connection to algebraic structure.

Definition 2.2 (Log-affine model). Fix A ∈ Zd×m as a matrix of integers, and let h ∈ Rm
>0.

The log-affine model formed from this matrix is the set of probability distributions (or mass
functions) that satisfy

MA,h := {p ∈ ∆m−1 : log p ∈ log h+ rowspan(A)} .

When h = 1, the all 1’s vector, then we denote MA,h := MA and call the model log-linear,
which is the specific model used in [YAK+21]. From now on, we will take h = 1.

The first immediate property that can be seen is that when 1 ∈ rowspan(A) and h =
1, the uniform distribution is contained within the model MA. This is because one can
normalize, dividing p entry-wise by m to get a point with all states having equal probability
in the simplex. Discrete log-linear models are known commonly as toric models to algebraic
statisticians. To show connections to toric varieties, we first provide another definition of a
monomial map associated to a log-linear model.

Definition 2.3 (Monomial map associated to log-linear model). From the previous definition
take A ∈ Zd×m with entries denoted aij, set h = 1, and consider MA. Also assume that
the uniform distribution is contained within MA. We have a monomial map of the following
form associated with the model MA:

φA : Rd → Rm

where

θ 󰀁→
󰀣

d󰁜

i=1

θ
aij
i

󰀤

1≤j≤m

.

Some authors choose to write a normalization constant of Z(θ) in the front of this monomial
map, which ensures that the map sends θ into the simplex ∆m−1.

We note that this parametrization of a log-linear model can be contextualized in terms
of real-world applications, which we will do in the next section, but for the sake of self-
containment, we will move on now to a proposition that describes the toric ideal that is
connected to this model.
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Definition 2.4 (Toric ideal). Let A ∈ Zd×m as before and put p ∈ Rm. The toric ideal

IA := I(φA(Rd)) ⊆ R[p1, . . . pm]
is the vanishing ideal generated by the set of possible distributions on the states of the model
MA.

For the reader unfamiliar with the notation I(·), for W ⊆ Kr for a field K,

I(·) := {f ∈ K[p] : f(a) = 0 for all a ∈ W}.
Therefore, IA is the set of all polynomials f ∈ R[p] such that f(x) = 0 for x ∈ imφ. We now
present the proof of a statement that appears in [YAK+21] and is taken for granted. It is a
standard result in [Sul23], but one that is not directly intuitive (at least to me) so I provide
its proof, spelling out all of the details.

Proposition 2.5. The toric ideal for a log-linear model associated with A ∈ Zd×m is a
binomial ideal and

IA = 〈pu − pv : u, v ∈ Nm and Au = Av〉.

Proof. First, consider a binomial pu − pv such that Au = Av. Then, we have that this
polynomial is in IA. To show this, pick x ∈ imφ. Recall that pj =

󰁔d
i=1 θ

aij
i . Therefore,

p
uj

j = (θ
a1j
1 · · · θadjd )uj = θ

a1juj

1 · · · θadjuj

d .

This means that

pu =
m󰁜

j=1

θ
a1juj

1 · · · θadjuj

d = θ
󰁓m

j=1 a1juj

1 · · · θ
󰁓m

j=1 adjuj

d .

Notice that pv takes the same form with the uj’s replaced with vj’s. But in the exponents,
the sums are simply the products of the rows of A with u and v respectively, which are
known to be equal. Factorizing therefore yields the claim that pu − pv is in the ideal. This
statement has an intuitive statistical rationale that will be explained in the next section.

To complete the proof, we must show that all such polynomials that vanish when evaluated
at a point p ∈ imφ are generated by the set of these binomials. Pick such a polynomial
f ∈ IA and take cup

u to be a monomial in this polynomial that has nonzero coefficient. As the
polynomial must vanish for any point p, for any θ in the source of φ (i.e. Rd), the polynomial
must vanish as a function of θ in the form f(φ(θ)). This means that cup

u must have a paired

term that allows it to cancel. From above, note that pu = θ
󰁓m

j=1 a1juj

1 · · · θ
󰁓m

j=1 adjuj

d , so in order
to cancel for any choice of θ, there must be a term cvp

v that allows for this cancellation. This
means that the dot products must align, implying that the restriction on u and v is that
Au = Av. Note that we must have this “corresponding negative term” for any such cup

u in
the polynomial f , which means that f can and must be represented as a sum of binomials
of the form cu,v(p

u− pv) where Au = Av. We have shown that a generating set for this ideal
is those very binomials. □

3. A Statistical Interpretation of Toric Models

This discussion first rephrases terms related to the algebraic characterizations of log-
linear models presented in [YAK+21] and in the previous section in ways that I feel are
more natural to a frequentist statistician who thinks in terms of a repeated experiments
framework. In particular, we can map each of the ideas presented in Section 2.2 to a setting
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where experiments are performed by repeatedly drawing balls of different colors from a bag.
Moreover, the paper starts with a discussion of the algebra and the geometry that is used,
and then moves into the statistics. I will do the opposite: first, I will describe the statistical
framework and experimental design, and then, I will show how this connects to algebraic
structures.

Example 3.1. Consider an experiment in which there are balls of d different colors, each
with a certain probability θi of being chosen from the bag, such that

󰁓d
i=1 = 1. Suppose

the person conducting the experiment draws with replacement from the bag n times. Put
the number of times that a ball of color i ∈ [d] is drawn as ni, with

󰁓d
i=1 ni = n. Now, the

probability mass function of drawing the (ni)
d
i=1 balls is

p(n1, . . . , nd) =
n!

n1! · · ·nd!
θn1
1 × · · ·× θnd

d

∝ θn1
1 × · · ·× θnd

d .

Already, one can see that this probability mass function, which is the probability mass
function for the multinomial distribution, is beginning to take the form of the monomial
map in Definition 2.3. Moreover, notice that here, θ lies in the ∆d−1 dimensional simplex, a
fact that we will come back to in Section 4.

To extend this example further so that it agrees with the log-linear model setup concerning
a matrix A and a probability simplex with m “states,” consider an extended version of the
experiment in Example 3.1. In particular, suppose that the person conducting the experiment
wishes to conduct the experiment multiple times. That is, they draw from the bag n times
and record the empirical distribution of the colors as just one experiment, and suppose they
conduct k experiments.

First, notice that the number of colors of balls in the bag and the number of times the
person conducting the experiment draws from the bag induces a probability distribution
on the possible outcome of any given experiment. Indeed, the probability of observing any
particular possible experiment is the probability of observing the colors that comprise that
possible experiment. Therefore, if there are m possible outcomes for an experiment, where
each of these outcomes representing a “binning” of colors, then we have a distribution over
m states (i.e. p ∈ ∆m−1), where each state is a possible experimental outcome.

Example 3.2. Consider an example where each experiment contains three draws with a bag
of two colors a and b. The possible outcomes for the number of color a and the number of
color b, or in other words, the possible outcomes for any given experiment, are (3, 0), (2, 1),
(1, 2) and (0, 3). Then, suppose the person conducting the experiment does so twice with
one outcome resulting in (3, 0) and another resulting in (1, 2). What is the probability of
this occurring? We have

p((3, 0) and (1, 2)) ∝
󰀕
2

1

󰀖
θ3aθ

0
bθ

1
aθ

2
b ∝ θ4aθ

2
b .

Notice that this example directly aligns with the example of the twisted cubic in [Sul23,
Example 6.2.5]. More generally, the probability of observing a certain count of experimental
outcomes is simply the probability of observing the total number of colors summed over all
the observed experiments, up to permutation (i.e. disregarding the factorial terms in front,
which swap the order of the experiments and in the case of the singular experiment, swap
the order of the draws).
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We now have the intuition to reconstruct the setup in [YAK+21] from the viewpoint of a
distribution on the colors. Instead of constructing a distribution on the possible experimental
outcomes first and relating it retrospectively to the distribution on the colors via a monomial
map parametrization and a torus action, we will take the more intuitive approach, building
up from the distribution on the colors, showing how a torus action naturally relates the
distribution on the colors to the distribution on the experimental outcomes. Then, having
observed many experiments and knowing the binning of colors that make up each potential
experimental outcome, we will show that whether or not it is possible to find the maximum
likelihood estimate for the distribution of experimental outcomes is related to the properties
of the torus action that maps between the distribution on the colors to the distribution on
the experimental outcomes.

To do so, for a set ofm experimental outcomes determined by n draws per experiment with
d colors, we would like to construct a map ψ : ∆d−1 → ∆m−1 (up to normalizing constants),
which takes a distribution θ ∈ ∆d−1 on the colors and takes it to a distribution p on the
possible experimental outcomes. For a given experiment j ∈ [m], let us observe n1j, . . . , ndj

colors, where
󰁓d

i=1 nim = n. We have

ψ :∆d−1 → ∆m−1

with

θ 󰀁→
󰀃
θ
n1j

1 × · · ·× θ
ndj

d

󰀄
1≤j≤m

.

Notice that we have arrived back at the very monomial map associated to the log-linear model
for the potential experiments that we stated in Definition 2.3, where each component of p is
a mass from the multinomial distribution, up to ordering of the draws for each experiment.
We can now identify (nij)1≤i,≤d,1≤j≤m with the matrix A ∈ Zd×m. That is, the columns of
A are identified with the various counts of the d colors in the bag for each experimental
outcome. We can take this further to show that this map is the action of θ as an element of
the d-dimensional algebaric torus.

Definition 3.3 (Torus action). Consider the d dimensional complex torus GTd. The action
of GTd on Pm−1

C under the matrix A ∈ Zd×m is given by the map that first sends a torus
element λ = (λ1, . . . ,λd) to the matrix

󰀵

󰀹󰀹󰀹󰀹󰀷

λa11
1 · · ·λad1

d

λa12
1 · · ·λad2

d

λa13
1 · · ·λad3

d
. . .

λa1m
1 · · ·λadm

d

󰀶

󰀺󰀺󰀺󰀺󰀸
.

The torus element then acts on a vector v ∈ Pm
C through right multiplication by the above

matrix.

To show how p ∈ ∆m−1 arises from a torus action, we make the (trivial) statement that the
probability of observing an experimental outcome is the probability of observing one time
in a repeated experiments framework. This statement allows us to encode the distribution p
as an action of the torus element θ on 1, the all 1’s vector. Indeed, let λ = θ as an element
in the d-dimensional algebraic torus, and identify (nij)1≤i,≤d,1≤j≤m with A as before, and let
θ act on 1.
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Revisiting the first statement of Proposition 2.5, that binomials of the form pu − pv are in
the toric ideal when Au = Av, also now has a very intuitive rationale. Recall that the columns
of A are identified with the counts of the d different colors, which means the row vectors
identify the numbers of color i ∈ [d] observed across the possible experimental outcomes.
Therefore if Au = Av, that means that u and v are two count vectors for experimental
outcomes that yield the same count of each of the d colors. As the vector p is simply a
function of the probability of the colors for fixed theoretical experimental outcomes, the
binomial must evaluate to zero because the counts of the colors is the same.

3.1. Maximum Likelihood Estimation. Ultimately, the goal of [YAK+21] is to use the
general toric geometry of GTd to find the maximum likelihood estimate for the true distri-
bution p ∈ ∆m−1 over the experimental outcomes from a vector of counts of these outcomes
taken over n experiments. There are certain conditions that must be met by the torus action
of GTd under a certain linearization for the MLE to even exist, relating to its stability of
the 1 vector under the action of elements in the torus (i.e. possible distributions of colors).

3.1.1. Geometric Background Related to Torus Actions. A linearization of the action of GTd

is a corresponding action that takes the matrix A and subtracts a vector b ∈ Zd from each
column of A. We will now describe certain notions related to the stability of a group action,
and then a torus action. For a vector v define its capacity cap(v) := infg∈G 󰀂g · v󰀂 where g
an element in a group G. We have the following definition for different forms of stability
under the group action, that will be related to geometry for a torus action, noting that the
algebraic torus is a group.

Definition 3.4 (Notions for stability). Let v ∈ Cm. Denote the orbit of v by G · v, and the
orbit closure in the Euclidean sense by G · v. Let the stabilizer be Gv = {g ∈ G : g · v = g}.
For those unfamiliar with group theory, the “orbit” of a vector is the possible locations the
vector can be sent by the group action. The stabilizer of a vector are the members of the
group that map the vector to itself. We call v

(a) unstable if 0 ∈ G · v. If 0 is in the orbit closure, then the capacity of v is 0.
(b) semistable if 0 /∈ G · v. If 0 is not in the orbit closure, then the capacity of v is greater

than 0 as the closure of the orbit includes the infimum over all possible destination
points.

(c) polystable if v ∕= 0 and the orbit is closed.
(d) stable if v is polystable and the stabilizer is finite.

Unstable points form the null cone of the action.

Denote the convex hull of the columns of A as a polytope

P (A) := conv{a1, . . . aj}.

Points in P (A) are equivalently represented by Au, where u ∈ ∆m−1 by the definition of a
convex hull. A subpolytope in this convex hull for an index set J ⊆ [m] is denoted by

PJ(A) := conv{aj|j ∈ J}.

Finally, for a vector v, denote its support supp(v) := {j | vj ∕= 0}. In other words, supp(v)
forms an index set J ∈ [m] that we can use to make subpolytopes. Denote

Pv(A) := conv{aj | j ∈ supp(v)}.
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For a given polytope P ⊆ Rd, we will denote the interior by int(P ) and its relative interior
by relint(P ). The following theorem relates Definition 3.4, the various notions of stability,
to the geometry of polytopes constructed from the columns of A, when the group action is
given by a torus.

Theorem 3.5 (Hilbert-Mumford criterion for a torus). Let v ∈ Cm and take the action of
GTd given by a matrix A ∈ Zd×m with a linearization b ∈ Zd. We have,

(a) v is unstable if and only if b /∈ Pv(A)
(b) v is semistable if and only if b ∈ Pv(A).
(c) v is polystable if and only if b ∈ relint(Pv(A))
(d) v is stable if and only if b ∈ int(Pv(A)).

The proof of this theorem is provided elsewhere [YAK+21, Appendix A]. We now have
enough to describe how the existence of the MLE for the distribution of experimental out-
comes given an observed count of each of these experimental outcomes, stored in a vector
u. We first remark that this vector u must have its components sum to the total number
of experiments undertaken (i.e.

󰁓m
i=1 ui = n). If we divide u by n elementwise, we have

an empirical, or observed distribution over the possible experiments. Denote this empirical
distribution as ū.

An immediate possible conclusion is that ū is the MLE for p, and indeed this may be
a possible MLE. But are there other possible MLE’s? The answer is a possible “yes,” as
similar to the first statement in Proposition 2.5, different observed counts of experiments
could lead to the same number of observed colors, and so even though we observed one
particular experimental distribution of experiments, we could just as easily have observed a
different distribution of experiments. This idea is what encapsulates the notion of a sufficient
statistic – that the statistic contains all there is to know about the model parameters. In
other words, knowing a count of observed experiments does not tell you everything about
the true probabilities of observing a particular experiment, but knowing the counts of the
colors does. This intuition is encapsulated in the idea that the MLE for p is a vector q that
satisfies

Aq = Aū,

which is a fact that is shown in [Sul23, Corollary, 7.3.9] as a result of a theorem about
sufficient statistics in exponential families.

There is an issue, however, with this approach, and that is what happens if we observe a
count of zero for one experimental outcome? It is certainly possible that this could be the
case experimentally, but any p containing zero lies on the boundary of MA. This is due to
the logarithmic condition that defines MA: we cannot include outcome probabilities of zero
in the model as the logarithm is not defined; however, we can get arbitrarily close to zero.

So, in order to find an MLE, there must be some other count vector that yields the same
number of colors as that of u, which defines the empirical distribution u

n
= ū with one of the

coordinates zero. In essence, if we cannot do this, the MLE does not exist. However, in this
case, if we extend MA to its closure in the Euclidean topology (i.e., to include distributions
where one or more of the experimental outcomes has probability zero), we can always find
an MLE, as the likelihood is continuous and MA is a compact set. We will call the MLE
on this set the extended MLE. The next theorem will provide geometric conditions related
to the stability of the torus action, which shows when we can find a true MLE and when we
must default to the extended MLE.
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Theorem 3.6 (MLE existence). Let u ∈ Zm
≥0 be a vector of counts of the observed experi-

mental outcomes that sum to n. Let A ∈ Zd×m encode these experimental outcomes, and let
MA be the associated log-linear model such that the uniform distribution exists in the model.
Then, the stability under the torus GTd with matrix nA and linearization b = Au is related
to the following:

(a) 1 unstable, which does not happen
(b) 1 semistable if and only if the extended MLE exists
(c) 1 polystable if and only if the MLE exists
(d) 1 stable, which does not happen

Proof. First, observe that 1 unstable does not happen. 1 would be unstable if and only if
b /∈ P1(nA) = P (nA). But notice that Au = b, so we divide u/n = ū, and multiply A by n,
we get a vector such that the entires sum to 1, we get nAū = b, so b ∈ P (nA). Now, we will
show that 1 is never stable under the action. To do so, we will show that the interior of this
polytope is empty. By assumption 1 is in the rowspace of A (so it is in the rowspace of nA).
Therefore, all columns of A lie on the same hyperplane defined by r1x1 + · · ·+ rdxd = 1. As
such, any affine combination of the vectors that lie in this hyperplane will also like in the
hyperplane, since we’re taking a weighted sum of the constant that defines the hyperplane.

Note that 1 is now either going to be semistable or polystable. If we show that the
MLE exists if and only if 1 is polystable, then we will have shown also shown (b), as the
extended MLE always exists. Suppose 1 is polystable. This is identified with b = Au ∈
relint(P1(nA)) = relint(P (nA)). We will show that this implies MLE existence. Polystable
means that there is some convex combination of the columns of nA such that Au = nAv
with the entries of v strictly positive that sum to 1 [Bro12, Chapter 3]. Recall that an MLE
is a solution to the equation Aq = Aū, where q lies in MA (i.e. requires all positive entries).
Dividing through, we have that Au

n
= Av, and so the v that ensures that Au is in the relative

interior of P (nA) is the q that satisfies the MLE equation.
Finally, suppose the MLE does exist. In this case, we have a strictly positive solution to

the equation Aq = Aū. Then, clearly, nAq = Au, which means that Au ∈ relintP (nA) and
the action on 1 is polystable. □

Note that in the case when u contains zeros, but the action is still polystable with respect
to the linearization Au, it is possible to find another observed experiment count that results
in the same counts of colors as that experiment count with zeros for some of the potential
experiment. And, by the convexity of the likelihood function, this MLE will be unique.

It is possible to give another geometric condition for MLE existence, this time in terms of
the semistability of the vector of counts, which is more intuitive than using a vector of all
1’s.

Theorem 3.7. Let u ∈ Zm
≥0 be a vector of counts of the observed experimental outcomes that

sum to n. Let A ∈ Zd×m encode these experimental outcomes. Then, the MLE exists if and
only if there is some b ∈ Zd where b = Av for some v ∈ Rm

>0, such that u is semistable for
the torus action given by nA with linearization b.

Proof. Assume the MLE exists. First of all, we know that Au = b lies in the polytope
Pu(nA). This is because we are only considering columns that have a corresponding nonzero
entry in u itself. Au is obviously in the span of only those columns, and Pu(nA) is an
affine combination of those columns. Shifting the n to multiply the weights of the affine
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combination matches up the two terms. Using criterion (b) in Theorem 3.5, u is semistable
with respect to the linearization Au, as Au ∈ Pu(nA). We must now show that u has all
positive real entries and meets the criteria for v. We may use the previous theorem, noting
that Au is in the relative interior of P (nA), so shifting the n to the affine weights yields the
claim. Therefore, if the MLE exists, u is semistable with respect to the torus action given
by nA with linearization b = Au.

Now, suppose that u is semistable for the torus action given by nA for some linearization
b = Av with v ∈ Rd

>0. That is, there is some Av ∈ Pu(nA), which in turn means that
there is some u∗ with support matching the indices where u is nonzero, and with the sum
of entries equalling 1, such that Av = nAu∗. We are free to set this u∗ = u

n
= ū as u

n
meets

both criteria for u∗. Doing so provides the solution to the MLE equation Aq = Aū, where
q = v

n
. □

This means that the MLE exists if and only if there exists some completely positive “count”
vector for experimental outcomes such that when you subtract the induced color counts from
the color counts of the original experimental outcomes, and take the “difference probability”
of the experimental outcomes as follows,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

λa11−b1
1 · · ·λad1−bd

d

λa12−b1
1 · · ·λad2−bd

d

λa13−b1
1 · · ·λad3−bd

d
. . .

λa1m−b1
1 · · ·λadm−bd

d

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
,

the original observed experimental outcomes under these difference in color counts proba-
bilities, for any such color probabilities, have a nonzero maximum lower bound probability.
Though interesting, I am not sure (yet) if this provides me with any additional statistical
intuition.

4. Bayesian Formulations

We have thus far assumed that the value of p, and therefore the values of θ that induce
p via the monomial map are fixed, but unknown quantities. But what if they were random
variables themselves and followed some sort of distribution that we had prior knowledge
about? How would observing counts of experimental outcomes change our intuition about our
prior beliefs of the distribution of these experimental outcomes? This is the central question
of Bayesian statistics, where parameters of generating processes are treated as variable in and
of themselves. In this section, I give a brief introduction to Bayesian formulations in classical
statistics and present some results regarding the algebra of Bayesian log-linear models.

4.1. Bayesian preliminaries. We will introduce Bayesian updating through the example
of a binomial distribution with parameter θ that is a random variable. Consider the setup in
Example 2.1, the binomial distribution with parameter θ, corresponding to a series of coin
flips. The likelihood of the data, given the parameter θ is

p(k | θ) =
󰀕
n

k

󰀖
θk(1− θ)n−k

and the goal is to learn θ, the probability of landing on “heads.”
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Let us assume that we have a prior belief about θ in that it follows some distribution p(θ).
Because θ is not fixed and follows a distribution, we do what’s called “turning the Bayesian
crank” to find a posterior distribution for the parameter. The posterior distribution is the
distribution of the parameter conditional on the observed data. By Bayes’ theorem, we have

p(θ | k) = p(k | θ)p(θ)
p(k)

.

Note that p(k) =
󰁕
p(k | θ)p(θ)dθ, as this expression marginalizes out θ. Oftentimes, this

integral is a tedious and possibly intractable computational task, and indeed, there are many
statistical tools for doing so, as well as connections found to algebra and geometry [Lin11].
But often, there exist models that can represent prior beliefs in the data that result in the
posterior belonging to the same family of models. This motivates the notion of a conjugate
prior.

Definition 4.1 (Conjugate prior). If, given a likelihood p(x | θ), the posterior distribution
p(θ | x) is of the same family as the prior p(θ), the prior p(θ) is said to be conjugate with
the likelihood.

Importantly, as they are chosen for algebraic convenience, conjugate priors allow us to
disregard the integral in the denominator of Bayes theorem as a known constant because
we can read off the posterior based on the kernel of the likelihood and the kernel of the
conjugate prior. In the case of the previous example, the prior family that’s conjugate with
the binomial likelihood is the beta prior, resulting in the beta-binomial model. We show the
conjugate update for the beta-binomial model below.

Example 4.2 (Beta-binomial update). We have a prior on θ as

p(θ) = dbeta(α, β)

and the likelihood for the trials is

p(k | θ) = dbinom(θ).

We have that

p(θ | k) ∝ p(k | θ)p(θ)
∝ θk(1− θ)n−kθα−1(1− θ)β−1

∝ θk+α−1(1− θ)n−k+β−1

∝ dbeta(α + k, β + n− k).

This is the posterior distribution for θ given the prior, the sampling model and the observed
data.

4.2. Conjugate setup in log-linear models. A Bayesian formulation, in a geometric
sense, is about putting a probability measure over points in a simplex which contains the
acceptable parameters for a model. In the case of the log-linear model, this can be done
both at the level of colors (i.e. a probability measure over points in ∆d−1) or at the level
of experiments (i.e. a probability measure over points in ∆m−1). The setup in [YAK+21]
concerning models and estimation is at the level of experimental outcomes, the distributions
on which are said to be parametrized by a distribution on the colors. As such, we seek to put
a tractable, conjugate prior over p ∈ MA, which is to say, we seek to put a prior distribution
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over the experimental outcomes. While it certainly possible to do this, in statistics, it is much
more natural to put a prior over the distribution of the colors. This is because a statistician
would interpret a distribution over the colors as the parameters of the model. Indeed,
in [YAK+21], p is described as being parameterized by θ via the monomial map. We wish
first to show the conditions under which these setups are equivalent given the standard map
that takes a given distribution over colors to its induced distribution on the experimental
outcomes. In a statistical sense, this reduces to when a (possibly empirical) distribution
colors is identifiable from a (possibly empirical) distribution over the experimental outcomes.
In an algebraic sense, given a distribution p ∈ ∆m−1, we should have ψ−1(p) the fibers contain
only one element. In other words, the map

ψ : ∆d−1 → ∆m−1

should be injective. We provide the conditions for this in the following claim. Recall
from [Wad24] that moving between a distribution on colors to a distribution on experi-
mental outcomes is given by the torus element θ = (θ1, . . . , θd) acting on the all-ones vector
1 with matrix A and the trivial linearization.

Proposition 4.3. As in Definition 3.3, let A be a matrix in Zd×m and θ be an element in
∆+

d−1. Then, the map ψ : ∆+
d−1 → ∆m−1 under the action

θ 󰀁→

󰀵

󰀹󰀹󰀹󰀹󰀷

θa111 · · · θad1d

θa121 · · · θad2d

θa131 · · · θad3d
. . .

θa1m1 · · · θadmd

󰀶

󰀺󰀺󰀺󰀺󰀸

󰀵

󰀷
1
...
1

󰀶

󰀸

is injective if and only if A is of rank d.

Proof. Suppose ψ is injective. Then, for ψ(θ) = ψ(θ′), we must have θ = θ′. Towards a
contradiction, suppose that the rank of A is not d. Then, consider for some ψ(θ) = ψ(θ′),
we have

󰀵

󰀹󰀹󰀹󰀹󰀷

θa1 − θ′a1

θa1 − θ′a1

θa1 − θ′a1

. . .
θa1 − θ′a1

󰀶

󰀺󰀺󰀺󰀺󰀸

󰀵

󰀷
1
...
1

󰀶

󰀸 = 0

where θ = (θ1, . . . , θd) and θ′ = (θ′1, . . . , θ
′
d). This implies that each θai = θ′ai for each i ∈ [d].

Further, we have log θai = log θ′ai which is unique, as θ, θ′ are in the positive orthant. This
can be rewritten as

ai1(log θ1 − log θ′1) + · · ·+ aid(log θd − log θ′d) = 0.(1)

Now, suppose that the rank of A is not d. Then, there is some nonzero c = (c1, . . . cd) such
that cai1+ · · ·+caid = 0. Equipped with c, we can find θ and θ′ that are not equal, where the
images are equal with (1) holding, violating injectivity. Thus, A must have rank d. Suppose
now that A has rank d and towards a contradiction, suppose that the map is not injective.
Let θ and θ′ be nonequal but let their images ψ(θ) and ψ(θ′) be equal. Then, (1) must hold.
But because the rank of A is d, the coefficients must be 0, implying that θ = θ′. So, φ is
injective. □
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Just as in the coin flipping case, where the beta family allows us to tractably represent
different beliefs in the values of θ and by extension 1− θ by choosing α and β, the Dirichlet
prior allows us to do the same for γ = (γ, . . . , γk) such that

󰁓k
i=1 γk = 1. In other words,

the Dirichlet distribution given parameters α1, . . . ,αk > 0 is a conjugate prior distribution
over the probability simplex

∆k−1 =

󰀫
γ ∈ Rk | γi ≥ 0 for all j and

d󰁛

i=1

γi = 1

󰀬
.

Algebraically speaking, there prior distribution on ∆k−1 is a map

ξ : ∆k−1 → R>0

where by the Dirichlet distribution,

γ 󰀁→ 1

B(α)

k󰁜

i=1

γαi−1
i .

For a likelihood over k states, the posterior distribution p(γ | u) can be written as

p(γ, u) ∝
k󰁜

i=1

γαi+ui−1
i .(2)

4.3. Bayesian algebraic statistics setup. We will now present a brief and simple calcu-
lation to show that the Bayesian setup “factors through,” in the sense that the maximum
a posteriori estimate (MAP), which is the maximizer of the posterior distribution in the
parameter, exists under shifted conditions as the MLE. Moreover, under a conjugate prior
for the toric model, we show that the Bayesian analogue of the MLE, the MAP always exists
when any sort of informative prior is assumed on and is analogous to the regular MLE. Re-
call that the issue with simply turning the Bayesian crank as in (2) is that in the log-linear
model, data are given in the form of u ∈ Zm but the parameters are given in the form of
θ ∈ Rd.

But using Proposition 4.3, we can directly assume that there is a prior distribution over
MA, which will immediately be identifiable as a prior distribution over ∆d−1, as long as we
assume that A is of full rank. That is, let each point p ∈ MA be distributed p ∼ π0, and
assume that π0 ∼ Dirichlet(α1 . . .αm).

Then, the posterior of p, with p now being treated as the “parameters of interest,” is

p(p | u) = pupα.

One can identify this function as a likelihood with the data L(u+ α; p), where

L(u+ α; p) = θ
a1·(u+α)
1 θ

ad·(u+α)
d ,

where a1, . . . ad are the rows of the matrix A. Recall that the maximizer is available in the
variable p, where this maximizing value of p is contained in the model MA by the conditions
in Theorem 3.6. The only difference is that instead of the torus acting on 1 through the
matrix nA with linearization Au = b, to determine the existence of the MLE, the torus acts
on 1 with linearization A(u+ α) = b′. Then, note that if α is nonzero, which corresponds to
an informative prior, there is no question that a MAP can always be found, as 1 will always
be polystable.
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The proof is as follows. Suppose that 1 is not polystable under the action. Then,

b′ = A(u+ α) /∈ relint(P1(nA)).

However, α is nonzero and u ∈ NM , so clearly there is a positive solution v to b′ = nAv.
This solution is v = 1

n
(u+ α), which is the MAP when an informative prior is placed.

5. Confidence Bounds: Sampling from conditional distributions

Beyond the MLE, which in statistics is known as a point estimate of a parameter, what is
also of interest is determining ranges where the true parameter could lie. These ranges, in
the frequentist paradigm, are known as confidence intervals. The procedure for their creation
yields that with a certain probability (i.e. before observing the data) the true parameter is
contained within the interval. Therefore, after observing the data and using the procedure,
an analyst can say with a certain degree of confidence that a computed bound contains
the true parameter that is to be learned. In many cases, computing such bounds relies on
asymptotic results concerning the Central Limit Theorem. For example, the fact that a
sampling distribution of a sequence of i.i.d. random variables converges after scaling and
shifting to a standard normal distribution, allows for the construction of confidence intervals
for a parameter that coincides with the expectation of one of these random variables in many
large N settings.

But what happens when it is inappropriate to appeal to the Central Limit Theorem or
another such asymptotic result? This is often the case in so-called small N settings, such
as that of clinical trials and associated experiments. Often, these settings correspond to
multi-way contingency tables, the sampling distribution for which is often assumed to be a
multinomial distribution, which of course are log-linear models.

In this section, we provide an exposition of a foundational paper in algebraic statistics,
which presents the backbone of a new approach to produce accurate confidence intervals,
particularly in small N settings. The approach to construct confidence intervals is as follows.
For every distribution in a discrete exponential family, there exists a sufficient statistic which
can be computed from the data. One can sample from the original distribution conditioned on
the sufficient statistic, which combines a notion of variability with that of what is observed
through the data. Sampling from this exact distribution can be done a large number of
times with the construction of a Markov chain; computing estimates of parameters from
each sample can yield credible intervals for the parameter of interest. In [DS98], methods
for constructing the Markov chains are presented and are tied to computational algebraic
geometry. To construct the Markov chains, what is needed is a Markov basis. Finding the
Markov basis is equivalent to finding the generators for an ideal in a ring of polynomials,
which is where the connection to algebra arises.

5.1. General discrete exponential families. Following [DS98], consider a general dis-
crete exponential family over a finite set X ⊂ Rm,

Pθ(x) = Z(θ) exp{θ · T (x)}

where θ ∈ Rd and T , a sufficient statistic, is a map from Rm to Rd. It is immediate that
the standard log-linear model MA falls into such a discrete exponential family. To see this,
recall the monomial map given in Definition 2.3, and further note that the likelihood for
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log-linear model can be written as

L(p; u) = pu = θ
󰁓m

j=1 a1juj

1 · · · θ
󰁓m

j=1 adjuj

d = θa1·u1 · · · θad·ud

up to the normalizing constant Z(θ) for u ∈ Rm. Reparametrizing θ1, . . . , θd with the
exponential operation and identifying T with the action of A on u by matrix mutiplication
yields this claim. Statistically speaking, u is a vector of counts of each experimental outcome,
and Au is a vector of total counts of states across all observed experimental outcomes.
Reframing the goal of this section, just as the objective of [YAK+21] was to understand
when it is possible to find vector(s) of counts of experimental outcomes that agree on total
counts of states, the goal of [DS98] is to walk around in the distribution of such vectors.

To do so, consider the set Yt = {(x1, . . . xn) ∈ XN : T (x1) + · · ·+ T (xn) = t}. This is the
set of possible samples from N runs of the experiment that yield a particular value t of the
sufficient statistic. In an exponential family, sampling from this conditional distribution is
uniform, but it is difficult to enumerate all of Yt. Another representation of t that will prove
useful for the construction of the Markov chain over Yt is

t =
󰁛

x

G(x)T (x) =
N󰁛

i=1

T (xi),(3)

where G(x) is #{i : Xi = x}. By representing t as a sum over the entire experiment space
X , where G(x) is a function that maps each possible experiment to the number of times it is
observed in a given sample, one can walk over the space of functions that satisfy Equation 3.
These equations are equivalent to different counts of experimental outcomes that yield the
value t of the statistic T over N samples. Therefore, let

Ft = {f : X → N :
󰁛

x

f(x)T (x) = t}.

The image of the uniform distribution on Yt under the map from Yt to Ft is the hypergeo-
metric distribution

Ht(f) =
N !

|Yt|
󰁜

x

(f(x)!)−1.

To sample from this distribution using a Markov chain, we use a Markov basis, for which
we now provide a definition.

Definition 5.1 (Markov basis). A Markov basis is a set of functions f1, . . . , fL : X → Z
such that 󰁛

x

fi(x)T (x) = 0.

Moreover, for any t and f, f ′ ∈ Ft, there exist (󰂃1, fi1), . . . , (󰂃A, fiA), where 󰂃i ∈ {−1, 1}, such
that

f ′ = f +
A󰁛

j=1

󰂃ifij and f +
a󰁛

j=1

󰂃jfij ≥ 0 for 1 ≤ a ≤ A.(4)

To sample from Ft, we use the basis as follows. From a starting f ∈ Ft, pick a number l
uniformly at random in {1, . . . , L}, and 󰂃 ∈ {−1, 1} in the same way. Then, form f + 󰂃fl. If
f+󰂃fl is nonnegative, the chain moves there. Otherwise, the chain stays at f . Note that due
to the first condition, the chain stays in Ft, because one can factor out the 󰂃 and recognize
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that
󰁓

x fl(x)T (x) = 0, thereby not changing the value of the sufficient statistic. In order
to devote more time to the algebra associated with finding this Markov basis, we leave out
details concerning the fact that this algorithm results in an irreducible, aperiodic Markov
chain with stationary distribution Ht(f), corresponding to the uniform distribution over Yt.

To construct the Markov basis, we need the following further notation. For each x ∈ X ,
introduce an indeterminate also denoted x in the ring of polynomials k[X ] over any field k.
A function g(x) will be represented by monomials

󰁔
x x

g(x) in this polynomial ring and will
be denoted X g. The sufficient statistic T will be further represented by a homomorphism of
polynomial rings

φT : k[X ] → k[t1, . . . td]

where

x 󰀁→ t
T (x)1
1 t

T (x)2
2 · · · tT (x)d

d .

Recall that T : X → Rd. In this notation, T (x)i corresponds to the ith coordinate of the
sufficient statistic T (x). A key ingredient is that any function f : X → Z can be written as
f+ − f−,where f+ = max(f(x), 0) and f− = max(−f(x), 0). Finally, let FT = {p ∈ k[X ] :
φT (p) = 0} (note the capital T in the subscript). Now, observe that

󰁓
x f(x)T (x) = 0 holds

if and only if the difference X f+ −X f− ∈ FT , where FT is represented an ideal in k[X ]. To
see this, first pick f such that the sum condition holds and split it into f+ − f−. Recall, for
the monomial

󰁔
x x

g(x), we have that T : X → Nd is represented by the map φT , which takes
󰁜

x

xg(x) 󰀁→
󰁜

x

(t
T (x)1
1 · · · tT (x)d

d )g(x) = t
󰁓

x T (x)1g(x)
1 · · · t

󰁓
x T (x)dg(x)

d

by the homomorphism rules. So, we have,

T

󰀣
󰁜

x

xf+(x) −
󰁜

x

xf−(x)

󰀤
= t

󰁓
x T (x)1f+(x)

1 · · · t
󰁓

x T (x)df
+(x)

d − t
󰁓

x T (x)1f−(x)
1 · · · t

󰁓
x T (x)df

−(x)
d .

(5)

In order for
󰁓

x f(x)T (x) =
󰁓

x(f
+(x) − f−(x))T (x) = 0, the terms

󰁓
x f

+(x)T (x) and󰁓
x f

−(x)T (x) must agree on every coordinate of T (x). Given this fact, we can write the
above as

ta11 · · · tadd − ta11 · · · tadd = 0,

which means X f+ −X f−
= 0. Having written the first direction out, the second is straight-

forward. Suppose there is a function f such that Equation 5 equals zero. Recognizing that
the sums must be the same value for this to happen, coordinate-wise, one can rearrange and
use the distributive property to yield the claim.

Now, consider a collection of functions f1, . . . fL and the monomial differences X f+
i (x) −

X f−
i (x). A stronger statement about these monomial differences encapsulates when f1, . . . , fL

is a Markov basis.

Theorem 5.2. The collection of functions f1, . . . , fL constitutes a Markov basis if and only
if the set

B = {X f+
i − X f−

i : 1 ≤ i ≤ L}
generates the ideal FT .
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To prove Theorem 5.2, we first need a lemma.

Lemma 5.3. Consider F ′, the ideal generated by the monomial differences for functions f
where

󰁓
x f(x)T (x) = 0,

F ′ = 〈X f+ − X f−
:
󰁛

x

f(x)T (x) = 0〉.

We have that F ′ = FT .

Proof. Observe from above that F ′ ⊆ FT . To show that FT ⊆ F ′, put a total order on the
set of monomials by ordering the variables and then saying that one monomial is larger than
the other by first checking the degree. If the degrees are equal, the monomial that has the
higher power on the first variable on which the two monomials disagree is said to be larger.

Towards a contradiction, suppose that FT is not contained in F ′. Then, there exists
p ∈ FT − F ′. However, because p ∈ FT , for the largest monomial X α of p, there exists a
corresponding monomial X β such that φT (X α) = φ(X β), by definition of FT . Factoring out
by the common variables of X α and X β yields X γ(X α′ − X β′

). Now, under the map φT ,
X α′ −X β′

= 0. As such, letting f(x) = α′(x)−β′(x) yields a function where
󰁓

x f(x)T (x) =
0. We note that α′(x) takes the role of f+(x) and β′(x) takes the role of f−(x) because
after factoring X γ, the two remaining terms have disjoint support. Moreover, subtracting
a multiple of X α − X β from p yields a polynomial in fewer terms and a smaller leading
monomial. Repeating this process yields the claim that F ′ = FT . □

We note that the techniques used in the proof of Lemma 5.3 is very similar in spirit to
the proof for Proposition 2.5. In fact, the proof of Proposition 2.5 is almost a special case
of the proof of the above lemma.

Proof of Theorem 5.2. To show that B is a Markov basis if and only if it generates FT ,
observe first that the first condition

󰁓
x fi(x)T (x) = 0 is satisfied if and only if B ⊂ FT .

Then, it remains to be shown that the connectivity properties in (4) hold if and only if B as
a set of monomial differences in k[X ] generates FT as an ideal in k[X ]. Suppose (4) holds.
Then, using the fact that F ′ = FT from the first part of the proof, it suffices to show that B
generates the generators of F ′. In other words, pick a function f such that

󰁓
x f(x)T (x) = 0.

Then, the associated monomial difference X f+ − X f−
must be in the ideal generated by B.

Once this is true, any element in the ideal F ′ = FT can be constructed by the elements in
the set of monomial differences B.

Because (4) holds, pick an admissible f , set t to some value and let g = f+ and g′ = f−,
with the goal of the monomial differences in B generating. Note that this is admissible
because

󰁓
x f

+(x)T (x)−
󰁓

x f
−(x)T (x) = 0, so the sums of the sufficient statistics over the

counts of each experimental outcome must be the same for some value of t, and so for any
f such that

󰁓
x f(x)T (x) = 0, f+ and f− lie in Ft for some t. Using (4), we have that

g′ = g +
A󰁛

j=1

󰂃jfij and g +
a󰁛

j=1

󰂃ifij ≥ 0 for 1 ≤ a ≤ A.

Suppose A = 1. If 󰂃1 = 1, then f− = f+ + fi1 , where fi1 ∈ f1, . . . , fL. Rearranging,
f− − f+ = fi1 = f+

i1
− f−

i1
. Identifying each of these functions with their monomials and

negating yields the claim for A = 1 and 󰂃1 = 1 Further, a similar claim holds for A = 1 and
󰂃1 = −1. For cases in which A > 1, one can always subtract the first term 󰂃jfij from g′.
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To show the other direction, suppose B as a set of monomial differences generates FT as
an ideal. Pick g, g′ and some t. We must show that if g, g′ ∈ Ft, then it is possible to
move between g and g′ using f1, . . . , fL in the appropriate way of (4). To begin, note that if
g, g′ ∈ Ft, then

󰁛

x

(g(x)− g′(x))T (x) = 0.

By a similar calculation as in (5), first represent p = g − g′ as p = X g − X g′ and recognize
that this is in the kernel of φT , so X g −X g′ ∈ FT . Then note that because B generates FT ,

X g − X g′ =
A󰁛

j=1

󰂃jX hj(X f+
ij − X f−

ij )

where hj : X → N. Note that we can put 󰂃j = ±1 because one could always repeatedly sum

for any coefficient of the outside monomial that is not 1. Now, note that X g = X hrX f−
ir

for some r. Observe that g − f−
ir

is nonnegative, as g = hr + f−
ir
. Moreover, g + fir =

g + f+
ir
− f−

ir
=⇒ g + fir = hr + f+

ir
. Now, subtract the term X hr(X f+

ir − X f−
ir ) from both

sides, this cancels the X g term and results in a term X g+fir and an expression X g+fir −X g′ .
The corresponding expression on the right hand side has 1 less term. If one keeps subtracting
terms in this manner, it is possible to link X g+fir . □

5.2. Toric model interpretation. Having stated and proven the theorem in a general
sense, we now connect it back to toric models. In particular, suppose we have a toric model
that satisfies the conditions of Proposition 2.5 for a matrix A ∈ Zd×m. Then, F ′ = IA. To
see this, pick a generator of F ′. That means, for the associated f+ and f−,

󰁛

x

(f+(x)− f−(x))T (x) =
󰁛

x

f+(x)T (x)−
󰁛

x

f−(x)T (x)

= A · (f+(x1), . . . , f
+(xm))− A · (f−(x1), . . . , f

−(xm))

by a vector representation of f+ and f− over the finite space X . Observe that when treated
as a vector, which is exactly what X f+ and X f− is doing, we have found two vectors u = f+

and v = f− such that Au = Av, where u and v are both in Nm by the definitions of f+ and
f−. Therefore, X f+ −X f−

is in IA. For the other direction, pick pu−pv such that Au = Av.
We will show that pu − pv lies in FT , which is equivalent to F ′. By a similar calculation as
in (5), we get that φT (p) = 0. As the members of each set of generators lies in the other
ideal, we have shown the equality.

This correspondence allows us to use Theorem 5.2 as follows. Identifying f1, . . . , fL such
that

󰁓
x fi(x)T (x) = 0 in the setting of Theorem 5.2 with vectors in the kernel of A, we

have that these vectors are a Markov basis if and only if the set

{pf
+
i − pf

−
i }

generates IA = FT = F ′. IA, of course, is generated by pu−pv such that Au = Av. Therefore,
finding a Markov basis is equivalent to finding vectors of counts of experimental outcomes
where the suffficient statistics match for any value of the sufficient statistic. Doing so allows
us to walk in the space of counts of experimental outcomes that yield a particular sufficient
statistic.
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6. Updating to Zero

In this section, we will revisit the recurring theme of “zeros” in count vectors of experimen-
tal outcomes in the log-linear model, and how algebra can help us bypass them. Somewhat
philosophically speaking, the question then becomes: should we bypass the zeros? Or, in
other words, what happens if it is true that a certain experimental outcome or cell in a
contingency table has zero probability, either structurally or otherwise. As it turns out,
detecting these cells was first proposed in an algebraic way, leveraging similar formulations
as to those presented in Section 5. The basic idea, from my understanding, is to define a
“maximal” toric model using the generators of the orthogonal space to basis of functions
f such that

󰁓
x f(x)T (x) = 0. Models are then presented as mixtures of models with cer-

tain parameters set to zero, each with some prior probability, and Bayes factors are used to
provide evidence in favor of a model with zero-probability cells or not.

Understanding these formulations with respect to both log-linear models (i.e. discrete
models and contingency tables) as well as the broader problem of pushing posterior proba-
bilities of events to zero when they “should be” is an area of possible future work.
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